

Bridging Science & Response (Americas)

ITAC 2017 Plymouth, England

Paul Schuler, Director, Regional External Affairs

OIL SPILL!!!

Natural Science informs Preparedness, Response & Restoration Social Science informs the ways people react

Emotional (sad/mad), Anger, Disappointment, Shock, Depression, Critical, Opportunistic, Political, Economic, etc.

Tier 3 Response Toolbox

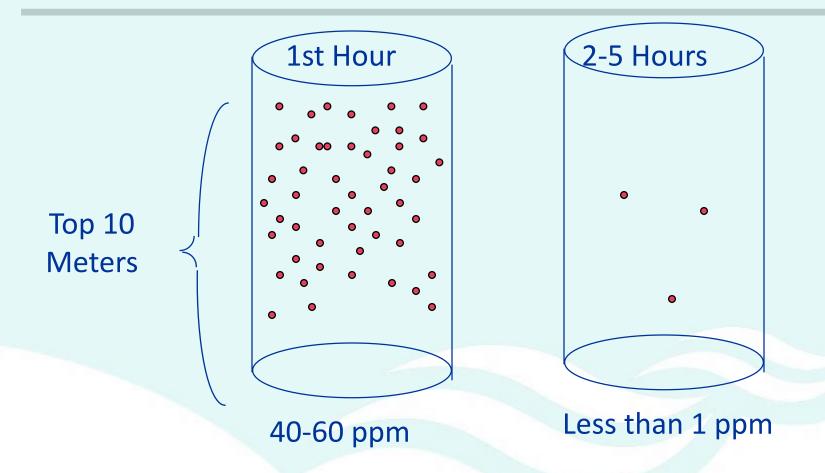
- Surveillance & Monitor Only
- ➤ Containment & Mechanical Recovery
- ➤ Shoreline Protection/Clean-up
- ▶ Aerial & Surface Dispersants
- ▶ In-situ Burning
- Subsea Intervention (Capping, Containment)
- Subsea Dispersant Injection
- ▶ Trained Personnel/SMEs
- ▶ Good Practice Guides

Outreach & Communications (Americas)

- Methods/Tools Employed Scenario & Science Dependent
- #1 Priority: Health & Safety of Responders & Community
- Feasibility: Weather, Geography
- Type & Fate of Spilled Oil
- Resources at Risk & Environmental Sensitivities
- Priorities of Stakeholders (PEAR)
- Available Response Resources & Logistics
- Realistic Expectations, Political Considerations
- Net Environmental Benefit Analysis (NEBA/SIMA)

ITAC 22017 Take Home (Scott, MNZ)

- Professional
- Evidence-based
- ➤ Intelligence-led
- Regulatory Compliant
- ➤ Explore New Ways of Responding
- ▶ Focus on Research, Science & Technology



Assessing Dispersant Science (Science Literate perspective)

- Toxicology
 - Realistic Concentrations
- ▶ Relevance & Scale
- Bio-availability
- Does it holistically apply to NEBA/SIMA
- Does it inform decision-making
- Does it appropriately impact the "Response Toolbox"

Dispersion Effect-Pulse Exposure

Water Currents Distribute Oil Over Wide Area Reduce Concentrations Before Adverse Effects Occur

Oil Spill Response

Maximum Calculated Concentrations Dispersed Oil at Various Water Column Depths

Numerical Maximum Concentrations of Dispersed Oil (.1mm and .2mm) into Various Water Column Depths

	.2mm thickness (in 1m2 area)	.1mm thickness (in 1m2 area)	
Surface (only) Volume	0.2 L	0.1 L	
	(1,000,000 ppm)	(1,000,000 ppm)	
Water Column Dispersion Depth (m)	Concentration mg/L(ppm)	Concentration mg/L (ppm)	
1m	200	100	
2m	100	50	
3m	66	33	
5m	40	20	
10m	20	10	

Oil Spill Science/Research

- Gulf of Mexico Research Initiative (GoMRI)
 - BP \$500 million/10 years
 - Consortium Advisory Committee (CARTHE II)
 - Research Board Liaison
 - Relevance of Science, Research Protocols (Concentrations & Toxicity
 - Synthesis
 - Participate in Research (Responder Perspective)
 - GoMRI Scientists at ITAC
 - GoMRI Track at IOSC 2017
 - OSR 201 @ GOMOSES 2018

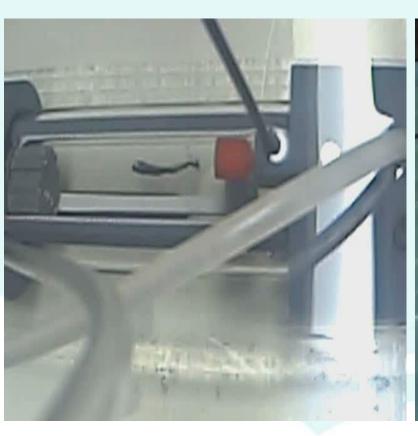
Science Culture (pure/applied)

- Objective: Understand Effects
- Grant \$\$\$ Driven
- Highly Specialized
- Micro View
- Work Environment:
 - High Control, Lab or Field
- Rigorous Peer Review, Replicable
- Make the dots,
- Synthesis Lacking/Pending
- Employs Social Media
- ▶ Audience: Other Scientists, Researchers
- ➤ End: "more studies need to be done"
- Publish or Perish

Responder Culture (applied)

- ▶ Understanding...as it Informs Preparedness, Response, Operational Decision-making
- Issue Driven
- Macro view
- Holistic
- Work Environment:
 - Field, High Uncertainty
- Act on Observations, not peer reviewed, not always replicable (SSDI)
- ▶ Connect the dots, Conclusions for OSPR
- ▶ High Pressure, High Stakes "What is the best action?
- ▶ Audience: Decision-makers, Public

DLR SAR-2 Calibration



University of Miami Impacts on juvenile and adult Mahi Mahi swim performance

SWIM TUNNEL RESPIROMETRY

Other US Research

- Parallel and After GoMRI
 - NOAA NRDA Data Sets
 - BSEE, NOAA
 - US Government: ICOPAR
 - Gulf Research Program (NASEM)
 - API

National Academy of Science

- Dispersant Efficacy & Effectiveness Committee
 - -1989,2005

Oil Spills & Public Health & Well-Being

Critical Review of Aquatic Toxicity of Dispersants

Phase I:

- Unpublished data sets released by BP
- Peer-reviewed papers by PIs

▶ Phase II:

- "Critical Review" of all Dispersant Toxicity Studies
- Chevron data/studies added
- Provide final work to NASEM Dispersant Committee (Jan/Feb 2018)

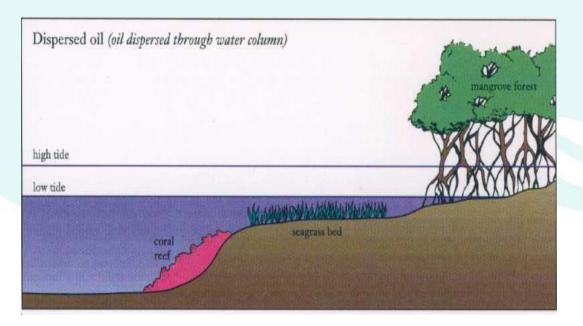
Water Column Monitoring White Paper

- **▶** OSRL IBP Forum in Rio (Aug 2017)
 - "Responding to a Subsea Incident"
- Monitoring Protocol inputs from Environmental Agency
- ➤ White Paper by CSA

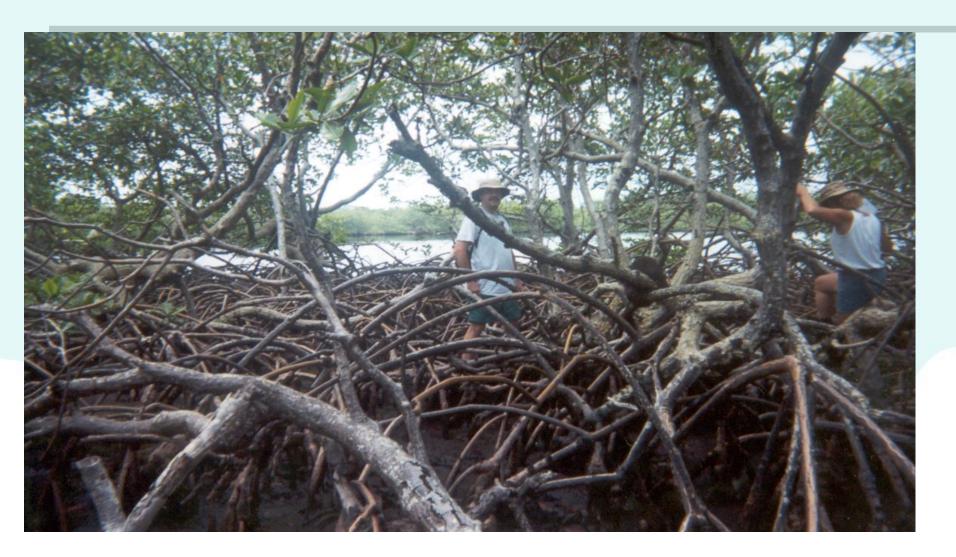
Understanding Dispersants in Oil Spill Response

Conducting Oil Spill Research

- TROPICS (1984 July 2016)


 Tropical Oil Pollution Investigations in Coastal Systems
- ▶ Long-term Field Study of "relative" effects of crude oil and dispersed crude oil on tropical marine communities: Mangroves, Seagrass and Coral community
- Application:
 - Basis for Net Environmental Benefit Analysis
 - Use of dispersant in near shore response
- 32 Year Visit:

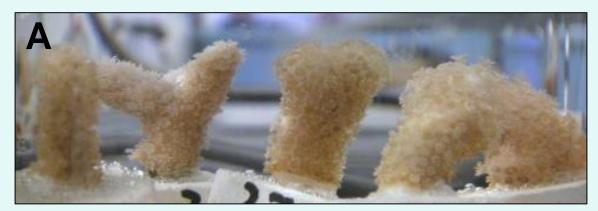
NSUOC, Texas A&M, NOAA, CEDRE, CCA/OSRL

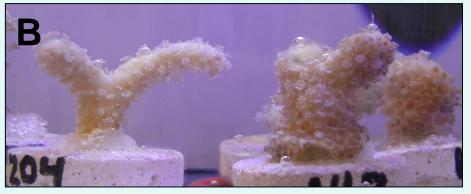


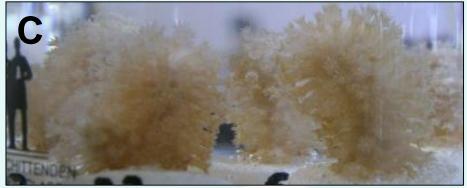
Non-treated Oil Site, June 2001

Dispersed Oil Site, June 2001

Oil Test Site, Aug 2004




SUMMARY CONCEPTS


- ▶ The habitat mangrove, seagrass, coral is more important for ecosystem recovery in the long-term than the organisms themselves.
- Organisms can repopulate if the habitat is preserved.
- ▶ Untreated oil (PAHs) can remain entrapped in substrate and affect the habitat for a very long time.

Coral Toxicity Study (3+ Years)

Quantifying Hydrocarbon Toxicity to Shallow-water Corals: Improving NEBA for Dispersant Decision-Making

D. Abigail Renegar, Nicholas Turner, Bernhard M. Riegl, Richard E. Dodge Nova Southeastern University Oceanographic Center

Anthony Knap
Geochemical Research Group, Texas A&M University

Paul Schuler
Clean Caribbean & Americas, Oil Spill Response USA Inc.

Research Team

Oversight Committee

Paul Schuler, CCA/OSRL

Dr. Victoria Broje, Shell

Dr. Erik DeMicco, ExxonMobil

Dr. Derek Eggert, Chevron

Claudine Le-Mut Tiercelin, CEDRE

Brad Benggio, NOAA

Researchers (NSU/Texas A&M

Dr. Abby Renegar

Dr. Dick Dodge

Dr. Tony Knapp

Dr. Bernhardt Riegl

Nicolas Turner

Collaborators

Dr. Tom Parkerton, ExxonMobil

Dr. Tom Coolbaugh, ExxonMobil

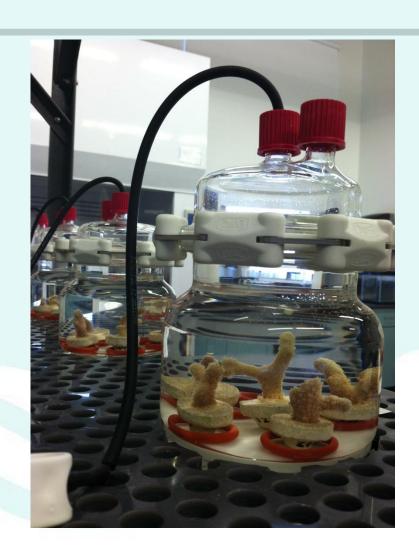
Dr. Tim Nedwed, ExxonMobil

Dr. Alan Mearns, NOAA

Dr. Adriana Bejarano, RPI

Dr. Jim Farr, NOAA

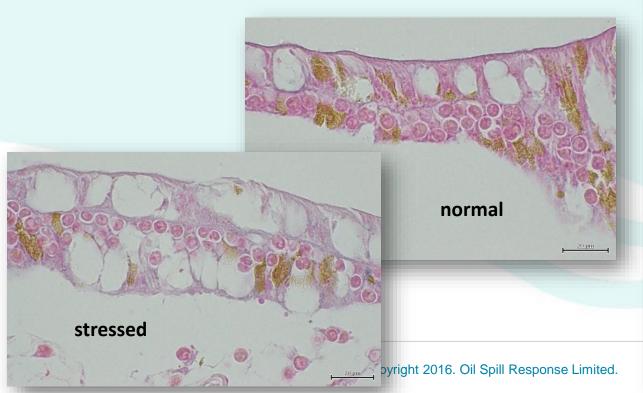
Dr. Will Gala, Chevron

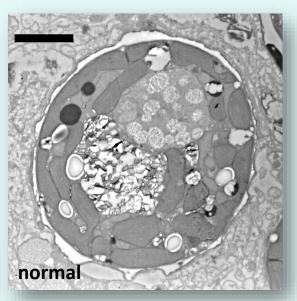

Dr. Rob Holland, OSRL (UK)

Geeva Varghese, OSRL (Singapore)

Design Objectives

- Designed with the end (not results) in mind!
- Cutting edge Toxicology, dosing methodology
- Output coral toxicity data input into NOAA CAFÉ
- Possible model real oil concentrations vs. toxicity thresholds
- Decision-making





Histological evaluation:

- Quantitative changes in tissue characteristics and cell types.
- Degeneration of tissues and symbiotic zooxanthellae.
- Gain or loss of zooxanthellae.
- Ultrastructural: sub-cellular changes (degradation of cell walls, mitochondria, zooxanthellar organelles).

CTLBB - Critical Target Lipid Body Burdens Comparisons

Species	Common Name	Habitat	CTLBB
Rhepoxyinus abronius	Amphipod	Infauna	31.2
Mysidopsis bahia	Mysid	Epibenthic	34.3
Eohaustorius estuarius	Amphipod	Infauna	41.4
Leptocheirus plumulosus	Amphipod	Infauna	43.1
Portunus pelagicus	Sand Crab	Epibenthic	53.3
Ampelisca abdita	Amphipod	Infauna	53.8
Palaemonetes pugio	Grass Shrimp	Epibenthic	57.3
Jordanella floridae	American Flagfish	Water Column	67.1
Cyprinodon variegatus	Sheepshead Minnow	Water Column	114
Oithona davisae	Copepod	Epibenthic	142
Meanthes arenaceodentata	Annelid Worm	Infauna	182
Artemia salina nauplii	Brine Shrimp	Water Column	194
Menidia beryllina	Inland Silverside	Water Column	292
Porites divaricata	Thin Finger Coral	Benthic	356

Clear, Consistent Messaging

Drinking vodka over ice can give you kidney failure,
Drinking rum over ice can give you liver failure,
Drinking whiskey over ice can give you heart problems,
Drinking gin over ice can give you brain problems,
Apparently ice is really bad for you!

... and dispersants?

18 Years Later

